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Spatio-temporal brain activity monitored by EEG recordings in humans and other

mammals has identified beta/gamma oscillations (20–80 Hz), which are self-organized

into spatio-temporal structures recurring at theta/alpha rates (4–12 Hz). These

structures have statistically significant correlations with sensory stimuli and reinforcement

contingencies perceived by the subject. The repeated collapse of self-organized

structures at theta/alpha rates generates laterally propagating phase gradients (phase

cones), ignited at some specific location of the cortical sheet. Phase cones have been

interpreted as neural signatures of transient perceptual experiences according to the

cinematic theory of brain dynamics. The rapid expansion of essentially isotropic phase

cones is consistent with the propagation of perceptual broadcasts postulated by Global

Workspace Theory (GWT). What is the evolutionary advantage of brains operating

with repeatedly collapsing dynamics? This question is answered using thermodynamic

concepts. According to neuropercolation theory, waking brains are described as non-

equilibrium thermodynamic systems operating at the edge of criticality, undergoing

repeated phase transitions. This work analyzes the role of long-range axonal connections

and metabolic processes in the regulation of critical brain dynamics. Historically, the

near 10 Hz domain has been associated with conscious sensory integration, cortical

“ignitions” linked to conscious visual perception, and conscious experiences. We can

therefore combine a very large body of experimental evidence and theory, including

graph theory, neuropercolation, and GWT. This cortical operating style may optimize a

tradeoff between rapid adaptation to novelty vs. stable and widespread self-organization,

therefore resulting in significant Darwinian benefits.

Keywords: machine understanding, cortex, perception, consciousness, graph theory, neuropercolation, phase

transition, criticality
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1. INTRODUCTION

1.1. Computers, Brains, and Energy
We tend to think of the field of computers and informatics
as a major event in the history of ideas, and that is broadly
correct. But the mathematics of computation can be traced
back to ideas propounded by philosophers and linguists at
least a thousand years ago. Western and Asian traditions are
often traced to the first millennium BCE; certainly the readable
scripts of that time seem to reveal ideas and observations
that are remarkably “modern.” History is itself a massively
parallel distributed network of events over many centuries.
It was not until the invention of digital computers about 80
years ago that systematic studies became feasible to explore
the possibility of developing man-made intelligent machines
(Turing and Haugeland, 1950; Von Neumann, 1958), which have
the potential of demonstrating problem-solving performance
comparable to humans. Computer technology demonstrated
exponential growth for over half a century. Computers support
all aspects of our life. Indispensable and pervasive, they lift
billions of people out of poverty worldwide and help them to
benefit from technological progress in a modern, interconnected
society. The dominant approaches in these applications use
Neural Networks (NNs) (Barto et al., 1983; Bishop, 1995; Miller
et al., 1995) and Deep Learning (DL), and produce cutting-edge
AI with often super-human performance (LeCun et al., 2015;
Mnih et al., 2015; Schmidhuber, 2015). The present development
trend of intelligent technologies is unsustainable. DL has very
high demand for computational power and it requires huge data
resources, raising many questions from engineering, societal,
and ethical perspectives (Jordan and Mitchell, 2015; Marcus,
2018; Kozma et al., 2019a). Computer chips reach hard limits,
marked by the approaching end ofMoore’s law, which dominated
computer development for over half a century (Waldrop, 2016).
Energy considerations are an important part of the challenges.
High-performance computers require increasing proportions of
the available electrical energy to operate (Amodei et al., 2018).
Moreover, it is increasingly complicated to remove the heat
dissipated in the densely packed microchip circuitries.

Brains provide us valuable clues regarding efficient use
of resources, including energy. The operation of brains is
naturally constrained by the available metabolic resources
following fundamental laws of thermodynamics. According
to the free energy principle, brains optimize metabolic and
computational efficiency by reconfiguring themselves while they
interact with the environment in the action and perception
cycle (Friston et al., 2006; Sengupta et al., 2013). Brains
continuously optimize their energy resource allocation, while
advanced computing algorithms are mostly agnostic when it
comes to power consumption. Arguably, brains are several
orders of magnitude more energy-efficient than cutting-edge
AI when solving specific machine learning tasks (Amodei
et al., 2018; Kozma et al., 2019b; Marković et al., 2020).
The efforts to achieve human-level intelligence and machine
understanding by scaling up computing using million-core chips
are impressive, but alternative approaches may become useful as
well. Energy-awareness is a basic manifestation of embodiment,

which is crucial for the emergence of intelligence in brains
and machines (Dreyfus, 2007), and it provides the key for
progress in machine understanding as well (Yufik, 2013, 2019).
Neuromorphic technologies have great potential in large-scale
computing systems, including spiking neural networks (Furber,
2016; Hazan et al., 2018; Roy et al., 2019), and memristive
hardware (Di Ventra et al., 2009; Chua, 2012; Kozma et al.,
2012; Stieg et al., 2019). Combining neuromorphic technologies
with brain-inspired thermodynamic models of computing has
the potential of providing the required breakthrough in machine
understanding (Yufik and Friston, 2016; Friston et al., 2020).

1.2. Cognitive Dynamics and
Consciousness
It is often thought that the question of consciousness in the
waking brain is so difficult and poorly understood that empirical
science has nothing to say about it. However, beginning some
decades ago, empirical scientists in psychology and neuroscience
have published literally thousands of scientific papers, mostly
on very specific aspects of conscious perception and cognition.1

Global Workspace Theory (GWT) is one of the prominent
modeling approaches (Baars, 1997; Baars and Geld, 2019; Baars
et al., 2021). GWT fundamentally proposes that the striking
capacity limits of conscious percepts implies very widespread
unconscious access to processing resources in the brain. This
convergence of two very different theoretical traditions suggests
that they are two sides of the same coin.

GWT first emerged around 1980, based on the cognitive
architecture tradition in cognitive science, including global
workspace architecture (Newell et al., 1972). The cognitive
architecture program goes back many decades, when Herbert A.
Simon and the Netherlands chess master Adrian De Groot began
to carefully study the move-by-move “consciousness reports” of
advanced chess players (Simon, 1967; De Groot, 2014). Since the
middle of the last century, a number of cognitive architectures
have been proposed and partially tested. The book by Newell
(1994) can be considered to be a summary of this empirical
modeling tradition. At least a dozen cognitive architectures
have been proposed in this research practice. They proposed
different computer implementations with two shared features:
All cognitive architectures had a serial perception and problem-
solving component, and in all cases the serial flow of immediately
accessible events interacted with a very large long-term memory
capacity, which appears to be a non-serial set of knowledge
sources. Cognitive architectures also merged with a separate
experimental cognitive research tradition, until, by the 1970s
and 80s, it began to seem that both lines of research could be
understood in a single framework (John and Newell, 1990). The
work of Tversky and Kahneman (2011) is another example of this
pattern of discoveries, focusing on the empirical phenomenon of
automaticity. Newell (1994) discussed this striking convergence
of a serial “stream of consciousness” reported by subjects, and
a very large, non-serial set of memory domains, which are not

1In the scientific literature, over 27 thousand relevant abstracts can be found at this

link: https://pubmed.ncbi.nlm.nih.gov/?term=conscious+brain.
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in reportable consciousness at any given time; but the massively
parallel memory domain is unconscious most of the time during
chess playing.

Baars was one of the first cognitive scientists to explicitly use
the word “conscious” for the serial component of chess-playing
protocols, and “unconscious” for the large set of knowledge
sources that players demonstrably use, but which may not
become explicit in any single chess move. What Baars called
Global Workspace Theory (GWT) in the 1980s combined two
streams of scientific study, the cognitive architecture tradition
and the field of cognitive psychology (Baars, 1997). That
convergence seemed to be surprisingly easy to describe. By
1980 the field of cognitive science began to emerge, and the
computational, mathematical, and cognitive-behavioral streams
of development turned into a single, extensive field of study.
Baars’ GWT linked a vast empirical literature to the theoretical
concept of consciousness, which could be inferred from the
mass of evidence, and which also seemed to reflect the reported
experiences of subjects in many tasks.

The distinctive feature of all cognitive architectures, including
GWT, can be found in Newell’s pioneering formulation.
Rather than a passive unconscious long-term memory, with
more powerful computers the idea emerged that the parallel
component reflects a “society” of specialized knowledge sources
that were not conscious by themselves, but which interacted
to “post messages” on some shared knowledge domain, called
a global workspace. Since that time, computational GWT has
seen very widespread use in cognitive and computer science.
The mathematics of parallel-interactive computation led to both
fundamental and practical insights into human cognition. What
seemed puzzling and scattered before 1980 gradually emerged
with a greater degree of clarity (Franklin et al., 2012).2

Cognitive Science is now Cognitive Neuroscience, leading
to another large set of converging ideas, with more and more
brain and behavioral evidence interacting in fruitful ways. In
fields like language studies, for example, it became routine
to consider the perceptual aspects of a stream of words (like
this one) as conscious, in fast-cycling interaction with multiple
unconscious knowledge domains. “Society models” gradually
merged with the brain sciences, giving rise to contemporary
cognitive neuroscience theory. We prefer to think of a “family”
of GWT architectures, where Baars’ version is perhaps the best
known today, but the family has many members that continue
to evolve. Essentially empirical, this set of theories may be
considered similar enough to be treated as a “family” of global
workspace-like approaches, including (Dehaene et al., 1998;
Fingelkurts et al., 2010; Edelman et al., 2011; Tononi and Koch,
2015; Kozma and Freeman, 2016; Mashour et al., 2020; Deco
et al., 2021). Each approach is distinctive and each is based on
a strong body of evidence; but they converge well. Much to our
surprise, a very large scientific literature in neurobiology has also
converged with all the fields in a remarkable way.

The current paper presents yet another region of
convergence between multiple empirical and theoretical

2Stan Franklin’s research group really pushed the world of computer science and

AI toward these cognitive architectures and moved the needle into this direction,

in a 20+ year strong research program at the University of Memphis.

streams of development. With direct brain recordings of the
electromagnetic activity of single neurons and massive neuronal
networks, we may be seeing a convergence between many
intellectual traditions. We view brains as large-scale complex
networks, and brain dynamics as percolation processes evolving
over these networks, with potentially adaptive structures.
We introduce several key analysis methods, such as the
thermodynamics of wave packets, statistical physics of criticality
and phase transitions, cinematic theory of neurodynamics and
metastability, and a hypothesis concerning the interpretation
of the experimentally observed neurodynamics using the GWT
framework. Two main computational results are introduced
to illustrate the findings. The first describes the essential role
of non-local axonal connections in maintaining a near-critical
state of brain oscillations. The second result concerns the role
of astrocyte-neural coupling in maintaining neural fields with
rapid transitions between states with high and low synchrony,
respectively. We conclude the work with discussing the potential
implications of these results to lay down the principles of
machine understanding.

The rest of the essay addresses the fundamental question:
What could be the evolutionary advantage of brains utilizing
phase transitions, as compared to possible alternatives with
smooth dynamics?

2. METHODS

Describing brains as open thermodynamic systems converting
noisy sensory inputs andmetabolic energy into conscious sensory
percepts to explicit understanding of the world.

2.1. Thermodynamics of Wave Packets3

There is a vast literature on experimental investigations of
thermodynamics of brains, see, e.g., Abeles and Gerstein (1988),
Fuchs et al. (1992), Freeman (2000), and Friston et al. (2006).
Freeman K sets provide a theoretical framework for brain models
with a hierarchy of increasingly complex structure, dynamics,
and function (Freeman, 1975, 1991, 2000; Kozma and Freeman,
2009). Several key aspects are summarized here, using the
concept of metastability,4 as described in Kozma and Freeman
(2016, 2017).

PROPOSITION 1 (Characterization of wave packets (WPs);
Kozma and Freeman, 2016). The action-perception cycle is
manifested through the self-organized sequence of metastable,

3We take no position on philosophical questions that are often raised in

connection with conscious perception, the brain, and the relevance of quantum

mechanics and quantum fields. Global workspace theory and neuropercolation

should be considered on their respective merits. Both theories have been fruitful,

and here we consider how they may interact in interpreting experimental results.
4A state of a dynamical system is called metastable, if it is not stable, but it

maintains its integrity for an extended period of time, which is meaningful for

the analyzed problem. In other words, a metastable state is unstable over very long

time scales, but it can be considered stable for shorter, still extended time periods.

It is of special interest to study metastability in spatially extended systems, when

metastability in time ismanifested in the emergence of well-defined spatial patterns

for some time periods. Transient dynamics from one metastable state to another

metastable state has been extensively studied in various mathematical and physical

systems. In the present essay, we refer to metastability appearing in the form of

intermittent synchronization of cortical activity.
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highly synchronized patterns of spatio-temporal amplitude
modulated (AM) activity at the beta/gamma carrier frequency
(20-80 Hz). These AM patterns emerge and collapse, and as such
they form spatio-temporal Wave Packets (WPs). The WPs evolve
as follows:

(i) WPs exist for a time window of ∼100 ms, corresponding
to approx. 10Hz frequency band. They have spatially-
localized evolving patterns, therefore they are sometimes
called wave packets.

(ii) WPs have statistically significant correlations with sensory
stimuli and reinforcement contingencies perceived by
the subject.

(iii) WPs are separated in time by brief transitionary periods (10-
20ms). During these transitionary periods, the AM patterns
collapse and large-scale synchrony diminishes.

(iv) The repeated collapse of WPs points to recurring singularities
in mammalian cortical dynamics ignited at a given location
of the cortex. Following the selection and activation of
a Hebbian cell assembly corresponding to the stimulus,
the synchronized activity of neural populations rapidly
propagates across the cortical sheet in the form of a
phase cone.

(v) The rapid transitions and propagation of phase cones
following their ignition cannot be explained by synaptic
transmissions only, and it requires the emergence of
collective dynamics.

The repeated collapse and emergence of the metastable wave
packets defines a quasi-periodic oscillatory energy cycle with the
following steps:

PROPOSITION 2 (Energy cycle of wave packets; Kozma
and Freeman, 2017). The temporal evolution of Wave Packets

is sustained by the corresponding energy cycle, described
by thermodynamic processes involving energy and entropy

transfer between highly-ordered (liquid) states and disordered
(gaseous) states:

(i) The cycle starts with a disordered background state with low

amplitude waves. This state has high entropy and in the
thermodynamic sense it is analogous to a gaseous state.

(ii) At a certain space-time point, synchrony is ignited in the

neural populations in response to a meaningful stimulus and
a phase cone starts to grow from an incipient state. The phase
cone develops into a highly structured, metastable WP with

low entropy oscillating at a narrow beta/gamma frequency
band. The emergence of the WP leads to the dissipation of

energy in the form of heat, which is removed by the blood
stream through the capillaries. This can be viewed as a

condensation process to a liquid state.
(iii) The metastable WP continuously erodes with decreasing

synchrony between the neuron components, due to the impact
of input stimuli and random perturbations. The entropy
increases, which corresponds to the thermodynamic process
of evaporation.

(iv) At the end of the cycle, the intensity of the neural firing
activity drops to a level when the activity patterns are
dissolved and the thermodynamics returns to the high-
entropy gaseous state.

This section summarized key aspects of experimental findings
on EEG recordings in terms of thermodynamic processes.
The next sections introduce methods of statistical physics and
mathematical theory of graphs and networks to quantitatively
characterize these findings.

2.2. Criticality in Brains and
Neuropercolation Model
The thermodynamic interpretation of the action-perception
cycle outlined above implies that brains operate through
repeated transitions between highly-organized, synchronous
states and disorganized states with low levels of synchrony.
These observations lead to the hypothesis that brains are critical
or near-critical systems, which has been proposed by various
authors. One prominent approach is based on the concept of self-
organized-criticality (SOC) when a high-dimensional complex
system organizes itself to a critical point which is an attractor
state. SOC demonstrates scale invariance, including power-law
behavior with 1/f scaling, where f is the frequency of the events
corresponding to the specific problem domains. In the case
of neural processes, f could relate, for example, to bursts of
spontaneous activity in neural populations, and 1/f shows the
number of bursts of the given frequency. SOC has been observed
in many disciplines, from earthquakes, to solar flares, sandpiles,
etc, and in neural tissues as well (Beggs and Timme, 2012; Shew
and Plenz, 2013). SOC is widely used now in the interpretation of
brain monitoring data, including the connectome, resting state
networks, consciousness, and other areas; see, e.g., Fingelkurts
et al. (2013), Tagliazucchi (2017), Nosonovsky and Roy (2020),
andWang et al. (2020). Under certain conditions, deviation from
the power-law behavior predicted by SOC are observed in brain
dynamics, which justify approaches addressing criticality beyond
SOC, e.g., critical integration and soft assemblies (Aguilera and
Di Paolo, 2021).

A related approach uses percolation theory to describe
criticality of brain operation, by modeling the cortical neuropil
(Kozma et al., 2005, 2014; Bollobás et al., 2010; Kozma and Puljic,
2015).

PROPOSITION 3 (Neuropercolation model of criticality and
phase transition in brain dynamics; Kozma et al., 2005; Kozma
and Puljic, 2015). According to neuropercolation, critical behavior
in the cortex is made possible by the filamentous structure of
the cortical neuropil, which is the most complex substance in the
known universe. Neuropercolation is the generalization of Ising
models and lattice cellular automata, and it describes the following
aspects of the neuropil:

(i) Presence of rare long axonal connections between neurons,
which allow action at distant locations with minimal delay.

(ii) Contribution of astrocytes cells, which have a key role in
metabolic processes and in the formation of field effects.

(iii) Incorporation of random noise effects; the model is
robust to noise and noise is an important constructive
control parameter to tune the system to achieve
desired behavior.

(iv) Input-induced and spontaneous phase transitions between
states with large-scale synchrony and without synchrony
exhibit brief episodes with long-range spatial correlations.
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(v) Neuropercolation proposes a constructive algorithm that
self-regulates cortical dynamics at criticality following
supercritical explosive excursions.

Beyond the theoretical results, neuropercolation has been
employed successfully to interpret experiments with Pavlovian
conditioning in rabbits (Kozma et al., 2014; Kozma and Puljic,
2015), on entrainment of sensory processing by respiration in
rats and human subjects (Heck et al., 2017, 2019), and strategy
changes during learning in gerbils (Kozma et al., 2021).

2.3. Intermittent Metastable Brain
Oscillations
There is widespread agreement that processing of sensory
information in the cortex is associated with complex spatio-
temporal patterns of activity (Abeles, 1982). Experimental
observations of intermittent brain oscillations with extended
metastable periods, interrupted by rapid transients, are widely
discussed in the literature (Lehmann et al., 1987; Buzsáki, 1998).
This issue is often framed as a choice between opposing views
of continuous vs. discrete cognition. Following the wisdom
of Kelso’s complementarity principle, the likely answer would
be that both discrete and continuous aspects are relevant
to cognition through the unity of continuity-discreteness
(Fingelkurts and Fingelkurts, 2006; Tognoli and Kelso, 2014; Parr
and Friston, 2018). Recent reviews by Josipovic (2019), Menétrey
et al. (2021), and Lundqvist and Wutz (2021) help to disentangle
the arguments.

The hypothesis that perception happens in discrete epochs
has been around for decades, and models of brains as
dynamical systems with itinerant trajectories over distributed
attractor landscapes provided mathematical tools to support
the analysis, see, e.g., Babloyantz and Destexhe (1986), Skarda
and Freeman (1987), Freeman (2000), and Tsuda (2001). Crick
and Koch (2003) described discrete frames as snapshots in
visual processing, as well as in consciousness; while Tetko
and Villa (2001) provided evidence of cognitive relevance of
spatio-temporal neural activity patterns. The sample-and-hold
hypothesis expands on the sampling idea and it describes the
perceptual and motor processing cycle (Edelman and Moyal,
2017). Spatiotemporal sequences of time-position patterns have
been observed in the human brain associated with cognitive
tasks (Tal and Abeles, 2018). Recent models describing sequential
processing of complex patterns of brain activity are developed in,
e.g., Cabessa and Villa (2018), Malagarriga et al. (2019).

EEG data evaluated using Hilbert analysis also display sudden
transitions of cognitive relevance (Brennan et al., 2011; Frohlich
et al., 2015), while operational architectonics provides a powerful
framework for transient synchronization of operational modules
underlying mental states (Fingelkurts et al., 2010, 2017). Phase
transitions over large-scale brain networks have been applied
to describe the switches from one frame to another in the
cinematic theory of neurodynamics and cognition (Kozma and
Freeman, 2016, 2017). Kozunov et al. (2018) evaluates MEG
visual processing data and points to the role of phase transitions
and critical phenomena to understand how meaning can emerge
from sensory data. The identified cycle length varies depending

on the experimental conditions; i.e., it is in the theta/bands
in the cinematic theory (Freeman, 2000; Kozma and Freeman,
2017); while Pereira et al. (2017) estimate a very long cycle of
consciousness (2 s). The work by Werbos and Davis (2016) is
unique by identifying a very precise clock cycle of 153 ms, by
analyzing Buzsáki lab data (Fujisawa et al., 2015).

There are various open issues regarding discrete effects in
neurodynamics and some questions were raised about their
significance in cognition and consciousness. For example, Fekete
et al. (2018) states that the involved brain networks cannot
produce switching behavior at the rates observed in brain
imaging experiments. They lay out a valuable work, but they
do admit that their reasoning does not hold for strongly
non-linear systems as brains are. Their proposed multi-scale
computation near criticality is certainly interesting and it has
a lot in common with the edge of criticality described as the
result of ontogenetic development in neuropercolation in the
past two decades (Kozma et al., 2005). White (2018) does
not question the existence of sudden changes observed by

Freeman et al. (2006), Brennan et al. (2011), and Kozma and
Freeman (2016), rather it misses the established proof that
these neurodynamic effects are relevant to conscious perception.
Clearly, there is a need for extensive further experiments before

confirming or rejecting the central hypothesis on the key role of
phase transitions in cognition and consciousness. Some recent
experiments lend support to the hypothesis on discontinuities in
cognition, such as entrainment of multi-sensory perception by

the respiratory cycle (Heck et al., 2017); how breathing shapes
memory functions (Heck et al., 2019); the role of state transitions
in strategy changes during an aversive learning paradigm and

the formation of Hebbian cell assemblies by identifying emergent
causal cortical networks (Kozma et al., 2021); and clustering of
phase cones during interictal periods over the epileptogenetic
brain region (Ramon and Holmes, 2020). Statistical markers of

phase transitions show potential use in psychotherapy (Sulis,
2021).

PROPOSITION 4 (Transient processing in perception; Kozma
and Freeman, 2017). Phase transitions over large-scale brain

networks have been applied to describe the switches from one frame
to another in the cinematic theory perception, as follows:

(i) The intermittent emergence and collapse of AM patterns

in EEG data is interpreted as the evidence that perceptual
information processing happens in discrete steps, aligned with

the prominent AM patterns.
(ii) The cinematic theory of perception uses the concept of the

frame and the shutter, which follow each other sequentially.
There is no exact threshold separating the two phases from
each other, rather they transit to each other following the
corresponding energy cycle of WP.

(iii) The frames are defined by the dominant AM patterns
which are sustained for an extended period of around 100
ms, with significant variation depending on experimental
conditions. The frames are selected according to the reinforced
contingencies as perceived by the subject. The frame activity
is largely synchronous across large cortical areas during
the existence of the frame. However, the frame is not
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a frozen pattern, rather it oscillates at the beta/gamma
carrier frequencies.

(iv) The shutter is defined by the relatively short periods (approx.
10 ms) when the AM patterns collapsed and the neural
activity is disordered, still not completely random and
maintains some trace of the previous dynamics.

The Freeman/Kozma approach has been called cinematic,
because the cortical dynamics self organizes into phase plateaus
at roughly every ∼ 100 ms, followed by a collapse of the phase
plateau for about 10 ms. During the brief collapse of synchrony,
the cortex is prepared to receive novel perturbations, while the
self organized phase synchrony is a time of relative stability and
internal processing. This style of functioning plausibly optimizes
a balance between receptivity to novelty and stability, pointing
to potential evolutionary advantage by the rapid, moment-to-
moment adaptivity of the conscious cortex.

Brains are dynamic systems, they can never stop, not even
during the relatively quiet periods when frames with metastable
amplitude patterns are maintained. Being constrained to a quasi-
periodic attractor basin during a frame is just the sign of relative
silence, before the explosive impact of the phase transition, which
destroys the existing structure and gives rise to the emergence
of a new pattern in response to the new sensory input and its
meaning to the subject (Freeman, 2000). Dynamical modeling
of the brain includes both continuity of the movement along its
trajectory, as well as rapid changes as the path leads from one
metastable state to another (Tognoli et al., 2018). The switches
are not rigid and they have their own rich dynamic structure and
a hierarchy with possibly scale-free distribution (Mora-Sánchez
et al., 2019). These results show that an integrative approach to
identify major features of cognitive dynamics and consciousness
is very productive, including the unity of discrete and continuous
operating modalities in brains.

2.4. Hypothesis on the Link Between EEG
Perceptual Transition and GWT
Phase transitions and criticality in cortical layers may have a
profound impact on the nature of consciousness. There have
been various attempts to integrate phase transitions with GWT,
such as the one by Werner (2013), to model the emergence of
multi-level collective behaviors in brain dynamics. Tagliazucchi
(2017) describes consciousness as the integration of fragmented,
highly differentiated entities into a unified message, and they
use percolation model to describe the propagation of conscious
access through the brain networkmedium, with phase transitions
when a critical threshold is reached. Josipovic (2019) elaborates
the concept of non-dual awareness in the framework of GWT.
GWT is hereby linked to perceptual phase transitions (Freeman,
1991, 2000; Kozma and Freeman, 2016).

PROPOSITION 5 (Main Hypothesis on EEG phase transitions
as indications of conscious experience Kozma and Freeman,
2016; Baars and Geld, 2019). Phase transitions in the cortex are
ignited at a given location of the cortex, according to EEG data.
Phase transitions generate laterally propagating phase gradients
(phase cones) across the cortical sheet. In the context of GWT, these
results are interpreted as follows:

(i) Phase cones are neural signatures of perceptual broadcasts
described by GWT.

(ii) The rapid expansion of phase cones, covering large cortical
areas within 10-20 ms, are consistent with the propagation of
perceptual broadcast postulated by GWT.

(iii) The recurrence time of the cortical phase transitions
is about 100 ms, which is consistent with the ∼ 100
ms window identified in numerous perceptual and
behavioral experiments.

The ∼ 100 ms time domain has long been studied in the sensory
sciences and proposed as an integration period for conscious
cortical information processing (Baars, 1988; Madl et al., 2011;
Baars and Geld, 2019). GWT suggests that conscious sensory
events are the leading edge of adaptation during waking life. The
very fast and highly adaptive role of cortex clearly fits within
a Darwinian framework of genetic, epigenetic, and moment-to-
moment cortical adaptation (Edelman et al., 2011). Edelman’s
Neural Darwinism is highly consistent with this approach,
and specifies the role of selectionism at multiple time and
spatial scales in the brain. Interpreting phase cones as neural
manifestations of perceptual broadcasts of GWT is an important
step to connect the content of consciousness with the temporal
structure of consciousness per se (Menétrey et al., 2021). Next,
computational results are introduced to illustrate the hypothesis.

3. RESULTS

3.1. Long-Axonal Connections Facilitate
Criticality in the Neuropil
Brain networks analysis has been successful to study anatomical,
functional, and effective brain connectivity, using tools of graph
theory (Iglesias and Villa, 2007, 2010; Stam and Reijneveld,
2007; Steyn-Ross and Steyn-Ross, 2010; Bullmore and Sporns,
2012; Haimovici et al., 2013). Imamoglu et al. (2012) suggest
that frontal and visual brain regions are part of a functional
network that supports conscious object recognition by changes
in functional connectivity. Zanin et al. (2021) point out
that neuroscience of brain networks often emphasizes the
extraction of neural connectivity represented by strong links
and highly-connected nodes, although weak links can in fact
be critical in determining the transition between universality
classes. Most of the existing network-based toolsets extract
information on the interaction of localized units and nodes
(Korhonen et al., 2021). Brains are metastable systems, and their
optimal functioning depends upon a delicate metastable balance
between local specialized processes and their global integration
(Fingelkurts and Fingelkurts, 2010), while minute perturbations
and topological changes can lead to significant deviations from
the normal operational dynamics (Tozzi et al., 2017), with an
impact on synchronization effects in these complex non-linear
systems (Brama et al., 2015; Xu et al., 2020). Random graphs
and cellular automata models have been developed for cortical
dynamics to address the challenges (Balister et al., 2006; Kozma
and Puljic, 2015; Ajazi et al., 2019; Turkheimer et al., 2019).
Percolation models are especially helpful in the interpretation of
experimental findings describing the intermittent emergence of
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common-mode oscillations in neural cell assemblies (Kozma and
Freeman, 2016).

An important theoretical finding describes phase transitions
in a graph model of the cortical neuropil with a mix of short and
long connections, including long axons (Janson et al., 2019). A
random graph G

Z
2
N ,p

is considered over the square grid of size

(N + 1) × (N + 1), and p is the probability describing random
long edges, see Equation (1). We assume periodic boundary
conditions, for simplicity, thus we have a torus with the short
notation Z

2
N . The set of vertices of G consists of all the vertices of

Z
2
N . There are two types of edges E, short and long, respectively.

Short edges are all the edges from the torusZ2
N ; i.e., each node has

4 short edges connecting to its 4 direct neighbors. Additionally,
we introduce random long edges as follows: for any pair of
vertices that are at distance d apart of each other on the lattice, we
assign an edge with probability p that depends on the distance:

pd = P

(

(x, y) ∈ E(G
Z
2
N ,p

) and dist(x, y) = d
)

= c/[Ndα], (1)

Here α is a number, e.g., α = 1. An activation process is defined
on G

Z
2
N ,p

as follows: Denote by A(t) the set of all active vertices

at time t. We say that a vertex v is active at time t if its potential
function χv(t) = 1 and inactive if χv(t) = 0. Therefore, A(t) =
{v ∈ V(G)

∣

∣ χv(t) = 1}. At the start, A(0) consists of all vertices
that are active with probability p0. Each vertex may change its
potential based on the states of its neighbors as follows:

χv(t + 1) = 11





∑

u∈N(v)

χu(t) ≥ k



 (2)

A vertex can become active if at least k of its neighbors are
active. Let ρt be a proportion of active nodes at time t, i.e.,
ρt = A(t)/N2 then the evolution of ρt can be described in a
mean-field approximation, for details, see Janson et al. (2019). A
key result has been derived for the existence of phase transition
of the activation process over G

Z
2
N ,p

:

PROPOSITION 6 (MAIN THEOREM JKRS219: on phase
transitions in the neuropercolation model with short and long
connections Janson et al., 2019). For the activation process A(t)
over random graph G

Z
2
N ,pd

, in the mean-field approximation, there

exists a critical probability pc such that for a fixed p, w.h.p.:

1. all vertices will eventually be active if p > pc, while
2. all vertices will eventually be inactive for p < pc.
3. The value of pc is given as the function of k and λ through the

solution of some transcendental equations.

The main theorem in Proposition 3.1 rigorously proves the
existence of phase transitions in neuropercolation model with
long axons; its meaning is illustrated in Figure 1, using numerical
evaluation of the precise mathematical formula. In Figure 1,
the x-axis shows λ, which scales linearly with the probability
of long axons, while the y-axis is the critical probability when
the phase transition happens; k indicates the update rule. It is
seen that there is a region for small λ values, where the model
behaves essentially as a local system. For large λ values, the
critical probability diminishes what is expected for a global system

without local order. There is a transitionary region when the
incremental addition of long connections does matter, as it is
expected to be the case in the neuropil. Clearly, this model cannot
grasp all the complexity of brain networks, and there are many
advancements including inhibitory and excitatory effects, multi-
layer architectures with delayed reentrant connections. Still, the
introduced effect is very robust and it is a unique property of the
neuropil with a mix of short and long projections. Brains can
benefit from the transitionary region for tuning their behavior
between local fragmentation and overall global dominance, using
adaptation and learning effects.

3.2. Metabolic Processing in the Neuropil
Controls Transitions Between States With
High and Low Synchrony Based on
Hysteresis Dynamics
Following fundamental studies on the brain energy budget
(Raichle and Gusnard, 2002; Magistretti, 2006), there are
extensive integrative models on metabolic coupling in the
neuron-glia ensemble with capillaries (Cloutier et al., 2009;
Belanger et al., 2011; Jolivet et al., 2015), and the role of metabolic
constraints on spiking activity (Teixeira and Murray, 2015; Zhu
et al., 2018; Qian et al., 2019). The models typically use multi-
compartmental neuron models, but some simplified still realistic
spiking neuron models are popular as well, e.g., Izhikevich
(2003).

To describe the emergence of synchronized collective cortical
oscillations driven by metabolic constraints, the capillary
astrocyte-neuron model (CAN) is introduced, which couples
spiking and metabolic processes (Kozma et al., 2018, 2019b). The
simplest CAN model has two metabolic variables: g(t) and m(t),
where g(t) describes the available glycogen stored in the astrocyte,
m(t) models the available ATP in the neuron’s mitochondria.
Izhikevich (2003) model is used for the spiking neurons, with
variables u(t) and v(t), which are the dimensionless membrane
potential and the membrane recovery variable, respectively. The
following differential equations describe the rate of change of
the variables:

dv/dt = 81(u, v)+ I(t)

du/dt = 82(u, v, b
+(m)) (3a)

dg/dt = −91(g,m)+ κ

∫ t

t−τ

v(t′)dt′

dm/dt = −92(g,m)+ 91(g,m) (3b)

Here 81(u, v) is membrane potential fitting function; 82(u, v,m)
describes the recovery variable dynamics, modulated by the
available ATP via m(t). 91(g,m) and 92(g,m) describe the
attenuation of g(t) and m(t), respectively. I(t) describes the
influence of synaptic currents. The integral term in Equation
(3b) describes the cumulative effect of spiking on the glutamate
concentration in the synaptic cleft, over time period of τ , and
κ is a scaling parameter. Izhikevich’s model has a sensitivity
parameter b regulating spike production inside term 82(u, v,m).
A nominal value of b = 0.2 assures regular spiking (Izhikevich,
2003). To close the feedback loop between the metabolic and
neural parts of the model, b is modulated by m(t) as follows:
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FIGURE 1 | Illustration of the effect of the long edges λ on the critical probability pc; parameter k specifies the type of the update rule; based on Janson et al. (2019).

b+(m(t)) = [ωb + βm(t)]. Here ω is a scaling parameter in
the range [0.75, 1.25], directly impacting the spiking density. The
2nd term reflects the contribution of m(t), where β is a control
parameter in the range [0, 0.5]. For β = 0, metabolic processes
do not impact spiking, while increasing β leads to increasing
frequency of spiking. Full elaboration of the model is given in
Kozma et al. (2018).

PROPOSITION 7 (Metabolic control of synchrony transitions
in neural populations based on hysteresis dynamics Kozma
et al., 2019b). The capillary astrocyte-neuron model (CAN)

described by Equations (3a)–(3b) demonstrates transitions between
synchronized collective cortical oscillations and the absence
of synchrony, as illustrated in Figure 2. The process has the
following properties:

(i) The amount of available energy modulates the oscillation

frequency of neural populations.
(ii) There is a hysteresis effect as the result of cusp bifurcation in

the CAN model. The space defined by the forward gain from
neural to metabolic subsystems, and the feedback gain from

metabolic to neural system has a bifurcation point leading
to the split of a stable equilibrium to two stable and one

unstable equilibrium.
(iii) The parameters corresponding to the bifurcated states

produce self-sustained oscillations between high and
low-synchrony states.

(iv) The results reproduce experimentally observed collective

neural dynamics in the form of large-scale cortical
phase transitions.

It is important to point out that the metabolic processes

are required to produce the hysteresis effect and the desired
transitions between states with high and low synchrony.

Populations of pure spiking neurons without metabolic
components are not sufficient to reproduce the experimentally

observed transition effects, as it has been remarked by Deschle
et al. (2021).

4. DISCUSSION: HUMAN
UNDERSTANDING AND MACHINE
UNDERSTANDING

This work explores what the evolutionary advantage may be of
brains utilizing repeated phase transitions at theta/alpha rates, as
compared to possible alternatives with smooth dynamics. There
are a striking number of regularities that are found over and
over again at around 10 Hz. Some of these emerge from the
mathematics of neurodynamics described here, and some of
them emerge from a century of research in conscious sensory
perception. We can call this pattern of convergence the “magic
number” near-10 Hz (∼100 ms). The flow of conscious events is
serial, while unconscious knowledge domains constantly interact
with the conscious stream, as EEG data and psychological
evidence show over and over again. The ∼100 ms Temporal
Window has been studied since the 1800s because it keeps on
emerging in psychological evidence. In psychology experiments,
it is always linked to highly reliable reports of conscious sensory
experiences. As we described here, the magic Temporal Window
may be explained by the cinematic view of neurodynamics and
phase transitions in the cortex. Because the ∼100 ms Temporal
Window is so common, and clearly appears in association with
conscious experiences, this possible link is intriguing.

Some of the empirical phenomena that clearly dwell in the
magic Temporal Window:

1. Two sensory inputs fuse into single conscious gestalts if they
occur within a ∼100 ms time window. This is an enormously
general phenomenon in sensory psychophysics, both within
and between the major sensory modalities.

2. Themotor domain shows a similar TemporalWindow. Simple
reaction time hovers around ∼100 ms. In continuous tasks,
the relationship between sensory output and motor outputs
works best within the Temporal Window.

3. The ∼ 100 ms sensory integration window is found in all
the major senses, and also in cross sensory tasks. We should
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FIGURE 2 | Metabolic-neural model; (A) hierarchy of structures from cellular, mini-column, and mesoscopic population levels; (B) hysteresis effect on the transition

between states with low (blue/turqoise) and high synchrony (purple); (C) examples of spiking raster plots for low and high synchrony.

reemphasize the extraordinary generality of this phenomenon
across vision, audition, and touch perception in humans and
other species. What has been missing is an explanation.

The mathematical properties of cortex, as found by Kozma
and Freeman (2016), may therefore explain unconscious-
conscious events as they have long been observed in psychology
experiments. Phase transitions create the basis for rapid and
robust responses to environmental challenges, which provided
our ancestors with evolutionary advantage compared to the
competitors. As an illustration of these abstract considerations,
we can easily imagine a wild rabbit needing to interpret a raptor
attack in order to escape it. Under the best possible scenario,
it may take ∼ 100 ms or more for the rabbit to perceive the
attack, and even longer to combine these events with short
term and long term memory (Madl et al., 2011). Based on
the evolutionary process, this specific time window is sufficient
to develop a successful escape strategy while optimizing the
finite resources of its brain and body, considering the natural
environment, in which the rabbit’s ancestors strived for millions
of years.

In this work, we outlined a framework for interpreting
and modeling brain measurements demonstrating metastable
dynamics with rapid transients, which can be used to develop
computational devices incorporating brain-inspired principles.
Such novel devices have the potential to develop machines which

understand the world around us in a way as we humans do, and
help us with the challenges we face.
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